Nachdem ich vor drei Wochen hier den Fabel’schen Längenrekord von 1947 und letzte Woche dessen Überbietung von Michel Caillaud aus dem Jahre 1982 vorgestellt hatte, will ich heute die Geschichte der Beweispartie-Längenrekorde weitererzählen.
Karl-Heinz Bachmann verbesserte 1987 mit einigen technischen Kniffen in ähnlichem Schema den Rekord auf 48 Züge (P0002277) – und dann kam ein Riesensprung: Dimitri Pronkin und Andrej Frolkin schraubten den Rekord auf unglaubliche 57,5 Züge!
Das konnte natürlich nur mit einer gänzlich anderen Grundidee funktionieren, denn das Fabel-Schema hatten Caillaud und Bachmann großartig ausgeschöpft. Pronkin und Frolkin hatten die aberwitzig erscheinende Idee, das Thema mit einer Anhäufung von Umwandlungen anzugehen.
Die Schwalbe 1989, Preis
Beweispartie in 57,5 Zügen (14+14)
Eine auf den ersten (und auch noch den zweiten und dritten) Blick schier unglaubliche Stellung mit jeweils acht Türmen – die beiden anderen Bauern müssen jeweils geschlagen werden, um Schneisen für die Umwandlungsbauern zu schaffen. Also nicht nur ein Längenrekord, sondern auch eine materialökonomische Aufgabe, die durch die Einheitlichkeit der Umwandlungen und die „aristokratische“ Stellung ohne Bauern nicht einfach „nur“ ein unglaublicher Rekord ist, sondern auch seine ästhetischen Reize hat.
Wie kann man die Aufgabe lösen?